
Newton's First Law/Inertia/Force Assessment Name:	
	Date:
 Imagine a place in the cosmos far from all gravitational aryou visit that place (just suppose) and throw a rock. The rock a. gradually stop. b. continue in motion in the same direction at constant speed. 	k will
2. A 2-kg object is moving horizontally with a speed of 4 m/s. keep the object moving at this speed and in this direction?	. How much net force is required to
3. Mac and Tosh are arguing in the cafeteria. Mac says that is speed it will have a greater inertia. Tosh argues that inertia crather upon mass. Who do you agree with? Explain why.	
4. Supposing you were in space in a weightless environment, object in motion?	would it require a force to set an

8. The group of physics teachers are taking some time off for a little putt-putt golf. The 15th hole at the Hole-In-One Putt-Putt Golf Course has a large metal rim which putters must use to guide their ball towards the hole. Mr. S guides a golf ball around the metal rim. When the ball leaves the rim, which path (1, 2, or 3) will the golf ball follow?

 9. A 4.0-kg object is moving across a friction-free surface with a constant velocity of 2 m/s. Which one of the following horizontal forces is necessary to maintain this state of motion? a. 0 N b. 0.5 N c. 2.0 N d. 8.0 N e. depends on the speed.
10. If the forces acting upon an object are balanced, then the objecta. must not be moving.b. must be moving with a constant velocity.c. must not be accelerating.d. none of these
11. When a person diets, is their goal to lose mass or to lose weight? Explain.
 Different masses are hung on a spring scale calibrated in Newtons. The force exerted by gravity on 1 kg = 9.8 N. The force exerted by gravity on 5 kg = N. The force exerted by gravity on kg = 98 N. The force exerted by gravity on 70 kg = N.